Monad University,Hapur

Programme Name- B.Tech (ME)
Programme year- 2019-20
Semester-IVth
Subject Name- Applied Thermodynamics

Topic:- Thermodynamics Relation
Sub Topic:- Maxwell Equation

Thermodynamics Relation

Some Mathematics theorems:-

Theorem 1:- If a relation exists among the variables x, y and z , then z may be expressed as a function of x and y.
$\mathrm{dz}=\left(\frac{\partial z}{\partial x}\right)_{\mathrm{y}} \mathrm{dx}+\left(\frac{\partial z}{\partial y}\right)_{\mathrm{x}} \mathrm{dy}$
if $\left(\frac{\partial z}{\partial x}\right)_{y}=M$ and $\left(\frac{\partial z}{\partial y}\right)_{x}=N$, then dz=Mdx+Ndy is called exact differential equation. Where M \& N are the function of x and y.
And $\left(\frac{\partial M}{\partial y}\right)_{\mathrm{x}}=\left(\frac{\partial N}{\partial x}\right)_{\mathrm{y}} \ldots \ldots \ldots$ this is the condition of exact differential equation.
Theorem 2:- If a quantity f is a function of x, y and z and a relation exist among x, y and z, then f is a function of any two of the x, y and z. Similarly any one of x, y and z may be regarded to be a function of f and any one of x, y and z.
Thus, if $x=x(f, y)$
$\mathrm{dx}=\left(\frac{\partial x}{\partial f}\right)_{\mathrm{y}} \mathrm{df}+\left(\frac{\partial x}{\partial f}\right)_{\mathrm{f}} \mathrm{dy}$
and $\left(\frac{\partial x}{\partial y}\right)_{\mathrm{f}}\left(\frac{\partial y}{\partial z}\right)_{\mathrm{f}}\left(\frac{\partial y}{\partial x}\right)_{\mathrm{f}}=1$
Theorem 3:- Among the variables x, y and z any one variable may be considered as a function of other two, thus
$\mathrm{x}=\mathrm{x}(\mathrm{y}, \mathrm{z})$
$\mathrm{dx}=\left(\frac{\partial x}{\partial y}\right)_{z} \mathrm{dy}+\left(\frac{\partial x}{\partial z}\right)_{\mathrm{y}} \mathrm{dz}$
and $\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial y}{\partial z}\right)_{x}=-1$

Maxwell Equation

We know that from $1^{\text {st }}$ Law of thermodynamics
du=Q-Pdv \qquad
from theorem 1
If $\mathrm{dz}=\mathrm{Mdx}+\mathrm{Ndy} \ldots \ldots \ldots .$. (b), then $\left(\frac{\partial M}{\partial y}\right)_{\mathrm{x}}=\left(\frac{\partial N}{\partial x}\right)_{\mathrm{y}}$
After comparing equation (a) and (b)
$\left(\frac{\partial T}{\partial v}\right)_{s}=-\left(\frac{\partial P}{\partial s}\right)_{v}$

We know that from enthalpy equation
$\mathrm{dH}=\mathrm{U}+\mathrm{PV}$
After differentiating above equation
$d H=d u+P d v+v d P$
$\mathrm{dH}=\mathrm{dQ}+\mathrm{vdP}$
$d H=T d s+v d P$

After comparing equation (b) and (c)
$\left(\frac{\partial T}{\partial P}\right)_{s}=\left(\frac{\partial v}{\partial s}\right)_{\mathrm{p}}$

From Helholtz function.
$\mathrm{F}=\mathrm{U}-\mathrm{TS}$
After differentiating above equation
$\mathrm{dF}=\mathrm{dU}$-Tds-sdT
dF= -pdv-sdT
After comparing equation (b) and (d)
$-\left(\frac{\partial p}{\partial T}\right)_{\mathrm{V}}=-\left(\frac{\partial s}{\partial v}\right)_{\mathrm{T}}$
$\left(\frac{\partial p}{\partial T}\right)_{\mathrm{V}}=\left(\frac{\partial s}{\partial v}\right)_{\mathrm{T}}$

Fron Gibbs function :-
G=H-TS
After differentiating above equation
$\mathrm{dG}=\mathrm{dH}-\mathrm{Tds}-\mathrm{sdT}$
dG= vdp-sdT
After comparing equation (e) and equation (b)
$\left(\frac{\partial v}{\partial T}\right)_{\mathrm{p}}=-\left(\frac{\partial s}{\partial p}\right)_{\mathrm{T}}$.

The above four equations (1),(2),(3) and (4) are called Maxwell Equation.
$\left(\frac{\partial T}{\partial v}\right)_{s}=-\left(\frac{\partial P}{\partial s}\right)_{v}$
$\left(\frac{\partial T}{\partial P}\right)_{\mathrm{s}}=\left(\frac{\partial v}{\partial s}\right)_{\mathrm{p}}$
$\left(\frac{\partial p}{\partial T}\right)_{\mathrm{v}}=\left(\frac{\partial s}{\partial v}\right)_{T}$
$\left(\frac{\partial v}{\partial T}\right)_{\mathrm{p}}=-\left(\frac{\partial s}{\partial p}\right)_{\mathrm{T}} \ldots \ldots .$.

